Notoginsenoside R7 suppresses cervical cancer via PI3K/PTEN/Akt/mTOR signaling
نویسندگان
چکیده
Notoginsenoside R7 was isolated from Panax notoginseng, a plant used commonly in traditional Chinese medicine. We investigated the anti-cancer effects of R7 in HeLa cells in vitro and in vivo, and explored the underlying mechanisms of action. R7 dose-dependently inhibited HeLa cell proliferation and induced apoptosis in vitro, In silico docking-based screening assays showed that R7 can directly bind Akt. Pretreatment with the Akt inhibitor LY294002 synergistically enhanced the R7 anti-proliferation and anti-apoptosis effects in HeLa cells, confirming that R7 acts through the PI3K/Akt pathway. Consistent with the in vitro findings, R7 exerted anti-tumor effects in a mouse xenograft model by targeting PI3K (PTEN) and Akt, activating the pro-apoptotic Bcl-2 family and, subsequently, caspase family members. R7 treatment activated PTEN and downregulated mTOR phosphorylation without affecting mTOR expression, though regulatory-associated protein of mTOR (raptor) expression declined. Our study suggests that R7 is a promising chemotherapeutic agent for the treatment of cervical cancer and other PI3K/PTEN/Akt/mTOR signaling-associated tumors.
منابع مشابه
Eupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway
Objective(s): Eupafolin, a major active component of Eupatorium perfoliatum L., has anti-inflammatory and anti-oxidant properties. Lipopolysaccharide (LPS) is responsible for myocardial depression. A line of evidences revealed that LPS induces autophagy in cardiomyocytes injury. This study aims to evaluate the effects of eupafolin on LPS-induced cardiomyocyte autophagy...
متن کاملGrowth factor progranulin promotes tumorigenesis of cervical cancer via PI3K/Akt/mTOR signaling pathway
Progranulin (PGRN) is an autocrine growth factor with tumorigenic roles in various tumors including cervical cancer. In this study, we investigated mammalian target of rapamycin (mTOR) signaling in response to PGRN induction and the contribution of the PGRN-stimulated PI3K/Akt/mTOR signaling pathway in the transformation and progression of cervical cancer. Here we identified a strong linkage be...
متن کاملNotoginsenoside R1 attenuates glucose-induced podocyte injury via the inhibition of apoptosis and the activation of autophagy through the PI3K/Akt/mTOR signaling pathway
Injury to terminally differentiated podocytes contributes ignificantly to proteinuria and glomerulosclerosis. The aim of this study was to examine the protective effects of notoginsenoside R1 (NR1) on the maintenance of podocyte number and foot process architecture via the inhibition of apoptosis, the induction of autophagy and the maintenance pf podocyte biology in target cells. The effects of...
متن کاملRIP1 activates PI3K-Akt via a dual mechanism involving NF-kappaB-mediated inhibition of the mTOR-S6K-IRS1 negative feedback loop and down-regulation of PTEN.
Therapeutic inhibition of mammalian target of rapamycin (mTOR) in cancer is complicated by the existence of a negative feedback loop linking mTOR to the phosphatidylinositol 3-kinase (PI3K)-Akt pathway. Thus, mTOR inhibition by rapamycin or TSC1/2 results in increased PI3K-Akt activation. The death domain kinase receptor interacting protein 1 (RIP1) plays a key role in nuclear factor-kappaB (NF...
متن کاملWhat controls PTEN and what it controls (in prostate cancer).
T he standard of care for metastatic prostate cancer (PCa) is androgen deprivation therapy since almost all PCa growth is initially reliant on the androgen receptor (AR). However, almost all patients develop resistance to this therapy within 18–24 months, and current treatment for castration-resistant prostate cancer (CRPC) is extremely limited, despite the advent of new drugs that target the A...
متن کامل